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Abstract

We study a two-dimensional structure map for AB3 binary transition metal compounds with variables appropriate for direct

quantum-mechanical energy calculations. The variables are the electron count and DHii; the difference in d-orbital Coulombic

integrals. The experimental structure map differentiates between the six known AB3 transition metal structure types:

Cr3Si; AuCu3; SnNi3; TiAl3; TiCu3 and TiNi3: The theoretical quantum mechanical map (based on m2-Hückel calculations) gives

good agreement with the experimental map.

The numerical accuracy of the m2-Hückel energies is assessed by direct comparison to LDA-DFT calculations carried out on

TaIr3: For this system, both the m2-Hückel and LDA-DFT calculations place the six structure types in the same energetic order. The

m2-Hückel theory, in addition, allows further analysis on the structural origins of these differences in energy. The chief structural

features responsible for differences in energy prove to be the varying number of three- and four-member rings of bonded atoms.

These results help delineate the principal factors responsible for transition metal icosahedral, Frank–Kasper vs. closest-packed

structures.

r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Structure maps have become one of the essential tools
of solid-state chemists for understanding the structures
of stoichiometrically homologous compounds [1–16]. In
ordinary usage, the chemist considers a few atomic
variables (often two) and then explores how these
variables can be used to sort out, rationalize and
in some cases even predict the crystal structure type
of a particular phase [17–23]. In this endeavor,
great attention must be paid to the variables chosen.
Of course they need to make intuitive chemical sense.
But to understand the exact energetic role of each
variable, it is also especially useful if the variables in
question can be directly incorporated into an energy
e front matter r 2005 Elsevier Inc. All rights reserved.
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calculation. For such energy calculations explicit use
of quantum mechanics and of a Hamiltonian is often
required.

The search for variables which the practicing chemist
can find in standard tables and for which the theorist
can discern a direct role in the Hamiltonian is a
surprisingly complex one. That this is so, can be seen
by the structure maps which have been created on the
basis of quantum calculations alone. For the most part,
quantum mechanically based structure maps are maps in
which the variables considered are derived from
quantum mechanics, but no algorithm is given as to
how these same variables can be used to calculate an
exact quantum mechanical energy [24–30]. Those
theorists who have produced maps based on electronic
energies have often relied on just a single variable, often
the total number of valence electrons or the volume of
the system, and, thus, either achieve only a partial
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Fig. 1. The common AB3 structure types discussed in this paper: (a)

AuCu3; (b) TiAl3; (c) TiNi3; (d) SnNi3; (e) TiCu3; and (f) Cr3Si

structure types. A atoms: white spheres, B atoms: black spheres.
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separation between known structure types or must limit
the range of compounds considered [31–33].

Even fewer are those structure maps which plot the
difference in energy as a function of two quantum
mechanical variables. Among these is the landmark
study by Pettifor and Podloucky [34] on binary AB

transition metal-main group compounds. In this work,
Pettifor and Podloucky produced a sorting of AB

structures based on the differences of their tight-binding
band energy. But as an examination of their work
shows, the resultant quantum-mechanical map can be
used only qualitatively to understand the experimental
structure map (they are shown side by side with different
variables in their paper).

The difficulty here is that in ab initio quantum theory,
the theory most often used in examining the differences
in energy between structures, electronic energies are
produced as a function of an exact chemical system. It is
therefore hard to discern two variables which capture
the complexity of the full chemical system. Far easier is
it to find a small number of determinate variables in the
context of model or semi-empirical methods. Here, by
definition the model has simplified the number of
variables which need be considered. It is not an accident
that in the Pettifor and Podloucky work previously
discussed, a semi-empirical tight-binding Hamiltonian
was applied.

In this paper, we develop a two-dimensional structure
map for AB3 binary transition metal solids (where A and
B are both transition elements). Unlike previous maps
for AB3 structure maps, the map variables can be
directly input into standard semi-empirical band calcu-
lations. The variables considered are the average
number of valence electrons per atom (electrons/atom)
and the difference in d-orbital energy between the
two atoms ðDHii ¼ HiiðAÞ � HiiðBÞÞ; where Hii refers
to the atomic d-orbital energy). Based on these
two variables, we calculate the difference in energy
between the six commonly observed transition metal
AB3 solids (Fig. 1): Cr3Si; AuCu3; SnNi3; TiAl3; TiCu3

and TiNi3:
The first of these compounds is the simplest of

all icosahedral phases while the remaining five are
all variants of a closest packing. We determine
which of these six structure types is preferred for a
given value of electrons/atom and DHii: We then directly
compare this structure map with the structure type
of the known atomically ordered (but magne-
tically unordered) AB3 solids. There are 35 such
experimentally observed phases, and as we show, there
is good agreement between the quantum mechanical
energy map and the structure type which is actually
observed.

We further study the structural features which cause
the differences between the icosahedral Cr3Si and closest
packed AuCu3 phases. Using the moment method, we
show that within the context of tight-binding band
theory, the key structural features are the different
numbers of triangles and four-member rings of bonded
atoms in the different structures [35,36]. This result may
help account for the electron counting rules which in
general differentiate closest packing from icosahedral
phases.
2. Technical procedures

2.1. Tight-binding band calculations

In the tight-binding method used in this paper, the
total energy ET is expressed by

ET ¼ UðrÞ � V ðrÞ, (1)

where UðrÞ is a hard-core interatomic repulsion energy,
V ðrÞ is an attractive bonding energy, and r is a
parameter dependent on the size of the system. The
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total energy ET can also be given as

ET ¼ g
Z 1

�1

ðE � EaveÞ
2rðE; rÞdE

þ

Z EF

�1

ErðE; rÞdE, ð2Þ

where the above integrals represent the repulsive and the
attractive energies, respectively. Here rðE; rÞ is the
electronic density of the valence bands, EF is the Fermi
energy, Eave is the average energy of the electronic
density of states, and g is a proportionality constant.
The density rðE; rÞ is found from the diagonalization of
the Hamilton matrix.

Rather than explicitly calculating g; we use the second
moment scaling approximation. As has been shown
elsewhere [9,37], the difference in energy between two
structures C and D is approximately

ETðCÞ � ETðDÞ ¼

Z EF

�1

ErCðE; rexptÞdE

�

Z EF

�1

ErDðE; rscaledÞdE, ð3Þ

where the size of the D system has been scaled so that,

Z 1

�1

ðE � EaveÞ
2rCðE; rexptÞdE

¼

Z 1

�1

ðE � EaveÞ
2rDðE; rscaledÞdE. ð4Þ

As Eqs. (3) and (4) imply, under such scaling conditions,
the repulsive energy cancels and the difference in energy
between the two structures is the difference in the
attractive energies.

Diagonal elements, Hii; are set equal to prescribed
Coulombic integral values, while off-diagonal elements
are based on the Wolfsberg–Helmholtz approximation,
Hij ¼

1
2
KSijðHii þ HjjÞ: The parameter K is set to 1.75

and orbitals are assumed to be single and double z
expansion Slater-type orbitals. For AB3 binary transi-
tion metal systems, parameters are needed for both the
A and B elements. We used the same z Slater-type
coefficients for both the A and B atoms. We assumed the
difference in Coulombic integrals of the A and B s; p;
and d are the same. We therefore reduce the difference
between the A and B atoms into a single parameter
DHii ¼ HiiðAÞ � HiiðBÞ where HiiðAÞ and HiiðBÞ refer to
the Coulombic integrals for the A and B atoms. The
atomic parameters are the same ones used effectively
in previous work on transition metal alloys [38].
These parameters were initially developed for extended
Hückel calculations involving Fe. The parameters
include Hiið4sÞ¼�9:10 eV; Hiið4pÞ¼�5:32 eV; Hiið3dÞ¼

�12:60 eV; zð4sÞ ¼ zð4pÞ ¼ 1:9; z1ð3dÞ ¼ 5:35 ð0:5505Þ;
and z2ð3dÞ ¼ 2:00 ð0:6260Þ: In all cases the rexpt was based
on the value for the Ti–Ni system, a system that
crystallizes in the TiNi3 structure type.

2.2. Literature survey of AB3 phases

The tight-binding calculations reported in this paper
are for AB3 binary transition metals. Such calculations
assume complete atomic ordering between the two
binary elements. Energies and not free energies are
calculated. No spin terms are included in the Hamilto-
nian. These calculational requirements place strong
constraints on the type of experimental systems con-
sidered. The above conditions suggest that we should
consider only perfectly atomically ordered, magnetically
unordered binary transition metal systems stable at
absolute zero temperature. However, few phase dia-
grams extend to temperatures below a few hundred
degrees Celsius. We therefore considered all systems
found at the low-temperature regime of existing phase
diagrams. We examined all binary phase diagrams
involving pairs of d-block transition metal elements.
Transition metal atoms are taken here to belong to
elements between groups 4 and 10 of the periodic table.
We consider only atomically ordered phases where the
stoichiometry was of AB3 type (A and B being the two
transition metal atoms).

In this paper we are interested in phases with no
known magnetic ordering, i.e., in phases which are not
ferromagnetic, ferrimagnetic, antiferromagnetic or con-
tain spin-waves. We therefore reviewed the data in the
Landolt–Börnstein compendium of magnetic data and
ruled out all phases which are known to exhibit any of
the above cooperative magnetic phenomena [39]. Such
considerations exclude many phases and especially those
containing the later first row transition metal elements:
Cr, Mn, Fe, Co, and Ni. Indeed, only 35 AB3 low-
temperature transition metal phases proved to be
atomically ordered but at the same time magnetically
disordered. These are listed according to structure type
in Table 1.

2.3. Tabulation of tight-binding Coulombic integrals

In order to directly compare known AB3 phases with
the band calculation results we need to determine, first,
the average number of valence electrons per atom in the
AB3 system and, second, the value for DHii: The former
may be directly determined from the atomic number of
the elements. For the latter we turned to standard
compendiums of extended Hückel parameters for
transition metal elements. These in turn are based on
tabulated numerical fits to Hartree–Fock and relativistic
Hartree–Fock calculations. Unfortunately, we could
find few complete tabulations which included all the
transition metal elements; some adjustments to tabu-
lated lists were therefore required. In this paper, we
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Table 2

d orbital Hii values for the d-block elements

Element d Hii (eV) Element d Hii (eV) Element d Hii (eV)

Sc �6.35 Y �6.80 Lu �6.62

Ti �8.04 Zr �8.46 Hf �8.14

V �9.55 Nb �10.00 Ta �9.57

Cr �10.91 Mo �11.54 W �10.96

Mn �12.27 Tc �13.08 Re �12.35

Fe �13.54 Ru �14.62 Os �13.74

Co �14.77 Rh �16.16 Ir �15.14

Ni �15.97 Pd �17.70 Pt �16.53

Cu �17.19 Ag �19.24 Au �17.92

Zn �18.29 Cd �20.78 Hg �19.43

Table 1

Stable transition metal AB3 compounds

AuCu3 SiCr3 SnNi3 TiAl3 TiCu3 TiNi3

CoPt3 CoV3 MoIr3 NbPd3 MoNi3 HfPt3
HfIr3 IrCr3 WIr3 TaPd3 NbNi3 TiNi3
HfPd3 IrMo3 VNi3 TiPd3

HfPt3 IrTi3 VPt3 TiPt3
HfRh3 IrV3 ZrPd3

NbIr3 NiV3

NbRh3 OsMo3

NbRu3 OsNb3

TaIr3 PdV3

TiIr3 PtV3

TaRh3 RhNb3

TiRh3 RhV3

VIr3
ZrIr3
ZrPt3
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adopt the d-orbital Hii parameters based on the
extended Hückel program YAeHMOP [40].

The YAeHMOP list of parameters is complete and
within individual rows of the periodic table follows
chemical intuition. For instance the first row HiiðdÞ

range from �11:04 eV for Ti, to �15:27 eV for Mn, and
to �20:19 eV for Cu. There is a similar trend in HiiðdÞ

values for the second and third row: �8:46 and �8:14 eV
for, respectively, Zr and Hf; �13:54 and �13:74 eV for
Fe and Os; and �19:24 and �17:92 eV for Ag and Au.
However, the values between rows appear not to follow
chemical intuition. As these values show, the Cu d-
orbital is lower in energy than the Ag or Au d-orbital.
Yet the d-orbital in copper is valence-like (Cu(II) is a
common oxidation state) while the d-orbital in Ag has
more core character (it is difficult to further oxidize the
silver atom past Ag(I)).

After checking other references for other common
extended Hückel parameters, we therefore corrected the
first row transition metal values by adding 3 eV across
the series. This correction is only an approximation.
Further improvements can be envisaged. For example,
with this correction the d-orbital energies of Cr, Mo and
W are all approximately the same. Our intuition is that
as higher oxidation states of Mo and W are more
common, that their d-orbital energies should be higher.
Table 2 gives the final if somewhat unsatisfying
tabulated values for the various elements.

2.4. Equations used in method of moments

It is possible to ascertain many of the energetic
features of the valence electronic density through study
of the moments, mn; where mn ¼

R1

�1
EnrðEÞdE and rðEÞ

is the valence electronic density of states. As some earlier
publications contain a number of typographical errors,
it is useful to review the equations used in the current
article. In this regard, please note that all equations
below assume the rðEÞ function has a total area of one,
i.e., m0 ¼ 1:

One can reconstruct rðEÞ from knowledge of the full
mn sequence [36,41]. The mn where n is a small integer
prove most important to this reconstruction. In the
scaled tight-binding band calculations used in this
paper, m0; m1; and m2 are invariant. It is most convenient
to therefore consider only density of states which are in
standard normal form, i.e., where m0; m1; and m2 are,
respectively, one, zero and one. The moments of such
standard normal densities of states can be established by
appropriate choice of the energy unit and a judicious
choice for the zero energy, see Appendix A.

As m0; m1; and m2 are invariant, the most important
moments controlling the full density of states are m3 and
m4: Experience shows the values of the third and fourth
moments are particularly informative when using the
above-defined standard normal rðEÞ functions. The
third moment gives a measure of the skewness or
asymmetry in the rðEÞ function while the fourth
moment gives some measure of the ‘‘peakedness’’ of
rðrÞ: (Later though in both this section and Appendix B,
we will discuss an even better measure of the peaked-
ness, the kurtosis.)

With two normalized density of states, rIðEÞ and
rIIðEÞ; if rIðEÞ has the more negative m3 value, then, for
low valence electron band fillings, the rIðEÞ distribution
has lower total energies. Under these same conditions,
the rIIðEÞ distribution has lower electronic energy for
higher band fillings. Similarly if m4 of rIðEÞ is greater
than the m4 of rIIðEÞ but where in addition the third
moments of rIðEÞ and rIIðEÞ are equal, then the I
geometry has lower total energies at very low and very
high electron band fillings while the II geometry is
energetically more stable near the half-filled band. These
findings are summarized in Fig. 2. In this figure we plot
the difference in electronic energies between rIðEÞ and
rIIðEÞ as a function of electron band filling.

When both m3 and m4 play a role in the difference in
energy, the energy difference curve is a composite of the
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Fig. 2. The role of m3 and m4 in the relative stability of two

hypothetical structures, I and II, as a function of fractional band

filling.
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Fig. 3. The role of kurtosis in the relative stability of two hypothetical

structures, I and II, as a function of fractional band filling. Notice that

in (a) structure II is most stable for most low band-fillings. The

kurtosis affects the width and position of this region of structure II

stability. For kðIÞokðIIÞ; this region is made narrower and shifted to

lower electron counts. For kðIÞ4kðIIÞ; it is broader and shifted to

higher electron counts.
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two separate curves given in Fig. 2. Unfortunately
though, one cannot just look at the differences of m3 and
m4 for the I and II geometries and then take a linear
combination of the curves in Fig. 2a and b. We can
however take such a linear combination if we define a
new variable, the kurtosis, k; which for a densities of
state in standard normal form, is

k ¼ m4 � m2
3 � 1. (5)

As discussed in Appendix B, the kurtosis is a better
measure of the ‘‘peakedness’’ of rðrÞ than m4:

Here we note that if the I and II geometries have the
same third moment, then the difference in k equals the
difference in the fourth moment. The curve shown in
Fig. 2a, is therefore not just a curve plotting the
difference in energy due to a difference in the fourth
moments, it is also the difference in energy due to a
difference in k values.

Furthermore, unlike in the case of m3 and m4; one can
take a linear combination of differences in m3 and
kurtosis, the two separate curves of Fig. 2, and arrive at
an approximate difference in energy. This linear
combination is shown pictorially in Fig. 3. In this figure
we consider the case where m3ðIÞ4m3ðIIÞ: In Fig. 3a–b
kðIÞ is, respectively, 4 and o than kðIIÞ:

For this paper, which deals with transition metal
compounds with roughly one-quarter to a one-half of
the s–p–d valence bands filled, we are particularly
interested in the crossing between the I and II energies
near the half-filled band. Where there is no difference in
kurtosis, this crossing is at roughly a 0.4 filled band, an
average of 7 valence electrons/atom. For systems where
kðIÞ 4 or o kðIIÞ; this crossing shifts to, respectively
higher and lower electron counts.

The functions on which Figs. 2 and 3 are based are as
follows. We consider four terms in deriving these
functions: m3 and k; the upper valence band limit, Eu;
and lower valence band limit, E l: From these four values
we generate an approximate expression for the electro-
nic density of states. This definition requires determina-
tion of three terms c; d; and f where

Eu ¼ �c þ 2
ffiffiffi
d

p
, (6)
E l ¼ �c � 2
ffiffiffi
d

p
, (7)

f ¼
E þ c þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE þ cÞ2 � 4d

p
2

. (8)

We find an approximate density of states rapproxðEÞ;

rapproxðEÞ ¼ Im
1

E � 1
E�m3�

k
Eþc�f

8<
:

9=
;. (9)

2.5. 3-rings, 4-rings and bond angles

The moment m3 and k are important, not just because
they determine the energetics of the system, but also
because it is possible to relate these terms to specific
bonding patterns in the given structures. This is so as

mn ¼ TrðHn
Þ ¼

X
i1 ;...;in

Hi1i2
Hi2i3

. . .Hin�1 in Hini1
, (10)

where Tr is the trace and Hij refers to a Hamiltonian
matrix element. The above equation tells us that terms
composed of three and four Hamiltonian matrix
elements directly affect m3 and m4: Triangles and squares
of bonded atoms (which we call 3- and 4-rings) are
important in these two moments. Also important in the
fourth moment are bond angles [37,42]. Recalling Eq.
(5), 3- and 4-rings also prove important in the value of k:

In this paper, we will use this connection to explain the
differences in energy between the icosahedral Cr3Si phase
and the other closest packed phases. Through the
intermediary of curves such as those shown in Figs. 2
and 3, we will be able to account for the difference in
energy between icosahedral and closest-packed structures
just by counting the number and types of 3- and 4-rings.

2.6. LDA-DFT calculations

For comparison with our tight-binding calculations
with the m2-method, the electronic energies AB3 were
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calculated also using ab initio theory. Here, the TaIr3
was optimized in each of the AB3 structure types
discussed in this paper using LDA-DFT via the VASP
package [43–46]. The cell volumes, were first optimized
using the conjugate-gradient algorithm available in the
package, followed by relaxation of the atomic positions.
All calculations were carried out using 15� 15� 15 k-
point meshes generated with the Monkhorst–Pack
scheme [47]. The ultra-soft Vanderbilt pseudopotentials
[48] which came with the package were used through
out. Plane wave basis sets were used in the high
precision mode with an energy cut-off of 250.0 eV.
11
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Fig. 4. Structure map for the known 35 atomically ordered,

magnetically unordered AB3 compounds. Good separation between

the close-packed structures (AuCu3; SnNi3; TiAl3; TiCu3; TiNi3) from

the icosahedral Cr3Si type is found for the parameters valences

electrons/atom and DHii:
3. Results

3.1. Experimentally observed structure map

Following the procedures outlined in the technical
section, we found 35 experimentally observed, low
temperature, atomically ordered, magnetically unor-
dered AB3 transition metal phases. Fifteen formed in
the AuCu3 structure type and 12 in Cr3Si type. In
addition there were 11 phases which formed in one of
the four remaining structure types: SnNi3; TiAl3; TiCu3;
and TiNi3:

Five of the six structure types mentioned above
correspond to closest packing arrangements of the
atoms. AuCu3 and TiAl3 are ordered versions of the
face-centered cubic (fcc) closest packing. Their struc-
tures are illustrated in Fig. 1. AuCu3 is the simplest
possible ordered fcc structure. Atoms on the cubic cell
corner are of one atom type (A), while atoms on the
cubic cell faces are of the other atom type (B). The TiAl3
structure is double the cell size of the AuCu3 structure
and is of tetragonal symmetry.

The SnNi3 and TiCu3 structures are ordered variants
of the hexagonal closest packing (hcp) structure (Fig. 1).
SnNi3 is of hexagonal symmetry while TiCu3 is
orthorhombic. Finally the TiNi3 structure is yet another
variant of the closest packing structure, the double
hexagonal closest packing structure (dhcp). Textbooks
[49] refer to fcc and hcp as, respectively, containing
ABCABC (each letter different from the two preceding
letters) and ABABAB (each letter the same as the letters
two places away) packing. In this notation, dhcp is an
ABACABAC packing. As reflection on these latter
letters shows, the dhcp packing is intermediate between
the fcc and hcp packings. The TiNi3 variant of the dhcp
packing is also illustrated in Fig. 1.

Unlike the other structures, Cr3Si is not an ordered
variant of a closest packing. It has a body-centered cubic
cell. The minority atomic compound, A (or Si), sits on
the cubic cell corners and body centers, while the
majority component, B (or Cr) sits in pairs along each
face. Its structure is illustrated in Fig. 1. As Fig. 1 shows,
the majority atom, B, forms an icosahedron around the
minority A atom.

A number of cubic structures based on icosahedral
packings are known [50]. In all these cases a crystal-
lographic point group of T symmetry (T is a subgroup
of both the icosahedral Ih and octahedral Oh groups)
can be found. This T point group aligns the three cubic
unit cell axes with the icosahedra. As a result the unit
cell axes become 3-fold rotation axes of icosahedra. The
Cr3Si structure is the simplest member of this family.

Two questions arise from the above-structural de-
scription. First, why sometimes are closest packed
structures adopted, while in other cases icosahedral
packing (as found in Cr3Si) are adopted? Second, what
factors cause one closest packed ordered structure to be
adopted for one phase and another structure type to be
adopted for another phase? The use of two-dimensional
structure maps helps answer these questions. In such a
structure map, we reduce the AB3 composition to two
quantifiable parameters and then plot the structure
types as a function of these parameters. In this paper we
seek parameters which not only cluster phases with
equivalent structure types together on the structure map,
but also we look for parameters which can be directly
applied in electronic structure calculations. The two
parameters we choose here are the average number of
valence electrons per atom (electrons/atom) and the
difference in energy of the respective atomic d-orbitals
(DHii).

We apply these parameters to the known 35 phases.
The results are shown in Fig. 4. As can be seen in this
figure, the icosahedral Cr3Si structure is adopted for
systems which are markedly chemically different than
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Fig. 5. Relative tight-binding energies for the AuCu3; Cr3Si; TiAl3;
TiCu3; SnNi3; TiNi3 structure types as a function of valence electron

count per atom at (a) DHii ¼ �10 eV; (b) DHii ¼ 0 eV; and (c) DHii ¼

þ10 eV: The graphs read such that the highest curve at a given electron

count is the most stable structure. The calculations include interactions

for all atomic contacts within 10 Å. All AB3 compounds discussed in

this paper fall within the 5.25–9.75 on the electrons/atom axis.
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the closest packing structures. The Cr3Si structure is
adopted for systems with 5–7 electrons/atom where
the minority component, A, is significantly more
electronegative than the majority component, B

(�8oDHiio� 2 eV). By contrast the closest packing
structures are found for systems with 7–10 electrons/
atom and where the A component is more electro-
positive than the B component (2oDHiio10 eV).

As Fig. 4 shows, these two parameters also allow us to
differentiate between the different closest packing
structures. The AuCu3 structure is adopted in two
regions: the first region is where DHii has a value near
zero; the second region is where 4oDHiio9 eV and
there are 8.5 or less electrons/atom. In the latter region,
as the number of valence electrons increases beyond
eight electrons/atom, first the SnNi3; then the TiNi3;
and, finally, at 8.75 electrons/atom, the TiAl3 and TiCu3

structures are adopted.
As the above shows, the two parameters, electrons/

atom and DHii may be used to differentiate between the
six structure types. But such review of experimental data
by itself does not allow one to delineate the actual
factors responsible for the stability of a given phase. To
identify such factors one must turn to the energies of
different structures.

3.2. Theoretically derived structure map

We center our theoretical analysis on semi-empirical
band calculations. Such calculations, unlike more
complex ab initio ones, allow the reduction of a full
band calculation to just a few simple parameters. In the
semi-empirical tight-binding calculations used in this
paper, the most pertinent such parameters are the
difference in energy of the constituent atomic orbitals
(DHii) and the total number of valence electrons. The
first corresponds to the difference in electronegativity
between the atoms, while the second leads to the average
number of valence electrons per atom (electrons/atom).

In Fig. 5 we show the results of tight-binding
calculations as a function of these parameters. Fig.
5a–c plots the difference in energy between the six
structure types as a function of electrons/atom for,
respectively, DHii ¼ �10; 0; and 10 eV. Recalling the
definition of DHii we note that for AB3 compounds
when DHii is negative, the A atom is more electro-
negative.

The differences in energy curves plotted in Fig. 5 are
given as a function of electrons/atom. Plotted is the
difference in energy, DE; between a given structure and
the AuCu3 structure type for given values of DHii and
electrons/atom. The convention is that when DE is
negative, the AuCu3 structure type is energetically
preferred. The differences of energy of all six structures
are plotted using the same convention. This allows for a
simple interpretation of the graphs. At a given electron
count, the most energetically preferred structure is the
structure whose DE curve is most positive.

As Fig. 5a shows, for DHii ¼ �10 eV; the AuCu3

curve is most positive between approximately 1.5 and
3.5 electrons/atom. This structure is therefore most
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Fig. 6. Tight-binding regions of stability with respect to band filling

and DHii for the (a) AuCu3; (b) TiAl3; (c) TiNi3; (d) TiCu3; (e) SnNi3;
and (f) Cr3Si: The shaded regions correspond to electron counts and

DHii values for which the respective structure type is most stable or

within 0.05 eV of the most stable one. The experimentally observed

occurrences of each structure type are plotted as dots for comparison.
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favored for this range of electrons/atom. In the same
way, the Cr3Si structure is favored from four to 9.5
electrons/atom. We can compare these results with
experiment. Experimentally, the only observed com-
pounds with a negative value of DHii are compounds
with electrons/atom values ranging from 5 to 7 (see Fig.
4). According to the results of Fig. 4a, we therefore
anticipate that the observed structures with DHiio0
should all have the Cr3Si structure type; this is indeed
observed.

By contrast, as Fig. 5c shows, for DHii ¼ þ10 eV; the
Cr3Si structure is preferred from 1 to 6.5 electrons/atom
(with the exception of a small zone of stability for the
TiCu3 structure near three electrons/atom), while a
mixture of closest packed structures are preferred
between 7.5 to 10 electrons/atoms. This latter region is
quite complex. In particular, the AuCu3 structure is
preferred from 7.5 to 8.6, TiAl3 from 8.7 to 9.1 and
TiCu3 from 9.1 to 10 electrons/atom. Also, the TiNi3
structure is close in energy to the most preferred
structure at 8.5 electrons/atom.

Again we can compare these theoretical results with
the experimental structure map. As Fig. 4 shows, for
DHii44 eV; AuCu3 is found from 7.75 to 8.5 electrons/
atom, TiNi3 at 8.5 electrons/atom, TiAl3 at 8.75
electrons/atom and TiCu3 at 8.75 and 9.0 electrons/
atom. These experimental zones of stability correspond
to the results of the band calculations cited in the
paragraph above.

The indication is therefore that there may be good
agreement between theory and experiment. In order to
test this hypothesis we therefore calculated differences of
energies between the six structures for DHii values of
10; 8; 6; . . . ;�8; and �10 eVs: We then interpolated
between these results to deduce which of the six
structures was lowest in energy for given values of
DHii and electrons/atom.

We plot the results of these calculations in Fig. 6. To
allow the ready comparison of theory to experiment, we
plot Fig. 5 on the same scale as that used in our
experimental structure maps. We plot, at given values of
both DHii and electrons/atom, which of the six
structures are either most stable or within 0.05 eV/atom
of the most stable structure. For ease of comparison,
also placed in Fig. 6 are the actual phases observed. As
this figure shows, there is a good correlation between
observed structure types and the structure predicted by
our tight-binding band calculations. In all cases the
observed structures are found within the zone predicted
by the quantum mechanical calculations or are just
outside the predicted stability zone.

Some stability zones are of particular interest. Among
these is the thin TiNi3 stability zone, found at
6oDHiio10 eV for 8.5 electrons/atom (Fig. 6c). This
region is between broader regions for, on the one hand,
the fcc structure AuCu3 (found from 7.5 to 8.5 electrons/
atom) and, on the other hand, the hcp TiCu3 structure
(found from 8.6 to 9.5 electrons/atom). As mentioned
earlier, the TiNi3 is a dhcp closest packed structure, a
structure intermediate between the fcc and hcp types.
The energetic results therefore follow the structural
systematics.

A second area of interest is those regions on Figs. 5
and 6 where DHii 	 0: As Fig. 6 shows, in this region,
the TiAl3 and AuCu3 stability zones closely resemble
one another. This is so as both TiAl3 and AuCu3 are
different ordered arrangements of the same fcc closest
packing. At DHii ¼ 0 there is no difference between A

and B atoms and therefore there is no difference in
energy between these two structures. Similarly, as TiCu3

and SnNi3 are both ordered hcp types, their energies are
also both the same when DHii 	 0:

Away from DHii ¼ 0, the differences between AuCu3

and TiAl3 or TiCu3 and SnNi3 becomes more evident.
For high DHii values, both AuCu3 and TiCu3 have
larger regions of stability than, respectively, TiAl3 or
SnNi3: This finding is confirmed experimentally. AuCu3
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is much more prevalent for DHii48 eV: Similarly TiCu3

is observed for DHii values for 4.4–6.0 eV while SnNi3 is
observed at lower values ranging from 3.6 to 4.2 eV.

3.3. Stability calculations for TaIr3 using ab initio theory

To calibrate the accuracy of the above tight-binding
calculations, we compare them to those from a higher-
level ab initio theory, LDA-DFT. As such DFT
calculations, unlike tight-binding calculations, are ap-
plied to actual chemical rather than model systems, we
choose an actual compound on which to perform the
calculations. We consider here TaIr3: We choose this
compound as the two elements involved have a reason-
ably large difference in electronegativity, and as both
elements are from the same row in the periodic table, the
elements are related to one another in the size of their
atomic orbitals. TaIr3 therefore tests the electronic
variables which are the principal concern of this paper,
electron count and DHii; rather than steric variables
such as orbital size.

In Table 3, we compare the relative energies of the
TaIr3 compound between the six different structure
types: AuCu3; SnNi3; TiNi3; TiAl3; TiCu3; and Cr3Si:
Also listed in Table 3 are the relative tight-binding
energies for an average of eight valence electrons/atom
and with DHii ¼ 6 eV (the electron count and the DHii

value of TaIr3). As this table shows, the m2-Hückel and
LDA-DFT calculations give qualitatively similar results.
Both types of calculation place the energies of the six
structures in the same order: AuCu3 is lowest in energy,
followed sequentially by SnNi3; TiNi3; TiAl3; TiCu3; and
finally at the highest energy, Cr3Si: (In agreement with
these calculations, TaIr3 is found in the AuCu3 structure
type). The calculational results suggest that m2-Hückel
theory correctly assesses not just the lowest energy
structure (as we inferred from the previous reported
comparisons between theory and experiment) but
differences in energy between higher energy geometries
as well. Numerically though, m2-Hückel energies suffer
from a scaling error. Energy differences are over-
estimated, and this overestimation appears to vary as a
function of the absolute difference in energy to the
ground state structure.

These results lend further credence to the qualitative
accuracy of the m2 tight-binding calculation. This is
important. The numerical agreement between m2-Hückel
Table 3

Calculated energies of TaIr3 in common AB3 structure types

AuCu3 SnNi3 TiNi3 TiAl3 TiCu3 Cr3Si

LDA-DFTa 0.00 eV 0.006 0.008 0.155 0.182 0.630

m2-Hückela 0.00 eV 0.032 0.079 0.184 0.324 0.869

aPer atom, relative to TaIr3 in the AuCu3 structure type.
and LDA-DFT energies allow us to more readily believe
the structure-energy relation derived from m2-Hückel
theory. In particular, it will support the arguments
based on the importance of 3- and 4-member rings of
bonded atoms.

3.4. Cr3Si vs. AuCu3

In this section, we use tight-binding theory to delve
deeper into the structural reasons behind the features
observed in the structure maps, specifically why the
Cr3Si structure is preferred for some electron counts and
closest packed structures for other electron counts. In
this analysis, we choose just one closest packed
structure, that of AuCu3; but as our discussion will
show, many of the same effects discussed here for the
AuCu3 structure will prove pertinent to all closest
packed structures.

Although the final picture is much simpler, the
analysis is rather involved. We include this section for
specially readers who have an interest in how the
structure and energy are bridged via the moments
method. Readers whose interests in tight-binding
calculations are more cursory may go directly to the
summary of this analysis (Section 3.4.2) without missing
the thrust of our arguments.

In essence, we will follow the difference in energy
curve between the AuCu3 and Cr3Si structures as we
turn sequentially from the full band calculation, to a
bond calculation involving first nearest-neighbor bonds
only, then to the third and fourth moments of the
nearest-neighbor bond calculation, and finally to the
number of triangles and squares of bonded atoms in the
two structure types. We will follow this chain of
calculations for a range of DHii values. When the
analysis is finished, we will have defined a set structural
factors responsible for the energy differences between
the icosahedral Cr3Si and closest packed AuCu3

structures.
We begin with the full band calculations. Earlier, we

showed the difference in energy between the AuCu3 vs.
the Cr3Si structure for DHii ¼ 10; 0, and �10 eV
(DHii ¼ HiiðAÞ � HiiðBÞ; where A and B refer to the
two elemental components of the AB3 compound) as the
dash-dotted lines in Fig. 5. For DHii ¼ 10 eV there were
two broad peaks in which the Cr3Si structure is
preferred (centered roughly at 2 and 5 electrons/atom),
while from 7 to 10 electrons/atom the AuCu3 structure is
energetically favored.

The DHii ¼ 0 eV curve bears similarities to the
preceding one. One notable difference is that the first
peak favoring the Cr3Si structure centered at two
electrons/atom has disappeared. For DHii ¼ 0; neither
structure type is particularly favored from 1–4 electrons/
atom. A second difference is that the amount by which
the AuCu3 structure is favored from 7 to 10 electrons is
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roughly halved. For example, the maximum amount by
which the AuCu3 structure is favored has reduced from
about 0.87 eV/atom to only 0.39 eV/atom.

The trends observed in going from DHii ¼ 10 to 0 eV
continues in going from 0 to �10 eV: At �10 eV;
between 1 and 4 electrons/atom, the AuCu3 structure
is now the preferred structure, while from 7 to 10
electrons/atom the region of AuCu3 stability has
disappeared and now slightly favors the Cr3Si structure.
However, the peak of Cr3Si stability centered at five
electrons/atom remains at approximately the same
height.

The above results include all atomic interactions
between atoms less than 10 Å apart. These results
therefore combine the energetic effects due to atoms
which are bonded to one another, and those atoms
which are too far from one another to be bonded in a
classical manner. As we now seek the origin of energetic
preferences, we differentiate between bonding and non-
bonding contacts. We recalculate the difference in
energies between the AuCu3 and Cr3Si structure types
setting all off-diagonal Hamiltonian matrix elements
between atoms greater than 3.0 Å apart to be formally
zero. The results of these calculations are shown in
Fig. 7.

There are marked similarities between the
AuCu3–Cr3Si energy curves of Figs. 5 and 7. In both
cases, for DHii ¼ 10 eV; the Cr3Si structure is preferred
from zero to roughly 7 electrons, but the AuCu3

structure is favored from 7 to 10 electrons. The initial
zone of Cr3Si stability centered at two electrons/atom is
largely lost in going from DHii ¼ 10 to 0 eV. Further-
more, in going from 10 to 0 eV, the zone of AuCu3

stability between 7 and 10 electrons/atom is approxi-
mately halved. Finally, for DHii ¼ �10 eV; AuCu3 is
Fig. 7. Relative tight-binding energies for the AuCu3 and Cr3Si

structure types as a function of valence electron count per atom at

DHii ¼ �10 eV; DHii ¼ 0 eV; and DHii ¼ þ10 eV: The calculations

exclude interactions for all atomic contacts longer than 3.00 Å. See

caption to Fig. 5 for a description of the graph conventions.
the more stable between 1 and 4 electrons/atom, while
Cr3Si is the more stable between 7 and 10 electrons/
atom. The curves of Figs. 5 and 7 are sufficiently similar
that we conclude it is near neighbor interactions which
are primarily responsible for the main energetic differ-
ences between the two structure types.

We now consider the moments of the AuCu3 and
Cr3Si densities of state, see the technical section and
Appendix A. Our interest here is the energetic role the
different moments play in the densities of states. For
those unfamiliar with moments analyses, we note that as
the zeroth, first and second moments are formally equal
in our tight-binding calculation, the leading moments
describing the differences in the densities of states are
the third and fourth moments.

In Fig. 8 we use Eqs. (6)–(9) and calculate the
difference in energy between the AuCu3 and Cr3Si
structures using only the third and fourth moments, and
the lower and upper limits of the valence energy bands,
E l and Eu (we continue to set off-diagonal interactions
between atoms further than 3.0 Å apart to be formally
zero). This is a major approximation. Comparing the
results of Figs. 7 and 8, we find the latter are highly
simplified.

However, the main trends previously discussed for
Fig. 7 are preserved in Fig. 8. In particular for DHii ¼

10; at low electron counts (from 0 to 6 electrons/atom),
the Cr3Si structure is preferred, while AuCu3 is favored
at higher electron counts. The stability of the Cr3Si
structure at low electron counts (from 0 to 4 electrons/
atom) is roughly halved in going from DHii ¼ 10 to
0 eV. These trends continue in the �10 eV case. Here, at
the lowest electron counts, the AuCu3 structure is
preferred, while from 7 to 10 electrons/atom the Cr3Si
structure is preferred. We conclude the main differences
of energy between the AuCu3 and Cr3Si structures can
be understood in terms of four variables: m3; m4; E l and
Eu: Of these four, the first two prove to be of greatest
importance.

In Table 4, we list the third moment, fourth moment
and the kurtosis for the AuCu3 and Cr3Si structures for
DHii ¼ 10; 0 and �10 eV in standard normal form. In
each case the Cr3Si structure has a more negative third
moment. But for �10 eV the Cr3Si fourth moment (as
well as kurtosis) is smaller than that of AuCu3 while the
fourth moment is larger for 10 and 0 eV. This is precisely
the case we discussed in Fig. 4. The third moment of one
structure is more negative but there is variation in which
structure has the lower fourth moment and the lower
kurtosis.

As we noted in our earlier discussion, the effect of
alternation in the fourth moment is to shift the crossings
from one structure type to the other structure type. In
the absence of any fourth moment contribution, there is
a crossing at the 0.4 band filled level (i.e., 7 electrons/
atom) this crossing shifts to a lower or higher electron
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Fig. 8. Relative energies of AuCu3 and Cr3Si structures (a) based solely on m3; k; E l; Eu and near-neighbor atomic contacts (p3:0 (A). Plots are given

for DHii ¼ þ10; 0 eV; and �10 eV; (b) with m3ðAuCu3Þ4m3ðCr3SiÞ and kðAuCu3Þ4kðCr3SiÞ; (c) with m3ðAuCu3Þ4m3ðCr3SiÞ but kðAuCu3ÞokðCr3SiÞ:
Note the similarity between the curves for (a) DHii ¼ �10 eV and (b). Note also the similarities between (a) DHii ¼ þ10 or 0 eV and (c). In (b) and (c)

the same difference in m3 was used.

Table 4

Adjusted moments of rCr3Si
and rAuCu3

a

DHii ¼ þ10 eV DHii ¼ 0 eV DHii ¼ �10 eV

AuCu3 Cr3Si AuCu3 Cr3Si AuCu3 Cr3Si

m0 1.00 1.00 1.00 1.00 1.00 1.00

m1 0.00 0.00 0.00 0.00 0.00 0.00

m2 1.00 1.00 1.00 1.00 1.00 1.00

m3 �0.718 �0.896 �0.544 �0.689 �0.518 �0.546

m4 3.70 4.04 3.73 3.97 2.89 2.80

k 2.19 2.24 2.43 2.49 1.62 1.50

aScaled such that m0 ¼ 1:00; m1 ¼ 0 and m2 ¼ 1:00:

Table 5

Decomposition of the normalized, standardized m3 of rCr3Si
and rAuCu3

into walks

DHii ¼ þ10 eV DHii ¼ �10 eV

AuCu3 Cr3Si AuCu3 Cr3Si

3-atom paths �0.95 �1.13 �0.37 �0.40

2-atom paths �2.13 �2.13 �1.54 �1.54

1-atom paths �1.24 �1.24 �1.79 �1.79

Other terms in m3
a +3.60 +3.60 +3.18 +3.18

Total m3 �0.72 �0.90 �0.52 �0.55

aLast and penultimate terms in Eq. (15).
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count depending on the differences in the kurtosis. In
Fig. 8b–c, we redraw the results of Fig. 4, where we
normalize the band filling to the s–p–d valence band. As
we are interested in only transition elements, we
consider electron counts ranging from completely empty
to slightly more than half-filled (i.e., with 10 d-electrons
or 10

18
of the band filled).

A comparison of Figs. 8a–c shows that the evolution
in the difference if energy between AuCu3 and Cr3Si can
be attributed to changes in the third and fourth
moments of these two structures. For DHii ¼ 10 and
0 eV, the Cr3Si structure has a more negative third
moment and a more positive kurtosis. For DHii ¼

�10 eV; Cr3Si has the more negative third moment, but

AuCu3 has the more positive kurtosis. It is the tension
between the third moment and the kurtosis which is
responsible for the shifts in structural stability.

3.4.1. Structure-dependent energy differences for Cr3Si
and AuCu3

In the previous section, we saw that the principal
terms controlling the differences in energy between the
Cr3Si and AuCu3 structure types were m3 and m4: We
found for all values of DHii that Cr3Si has the greater m3

value, but while at DHii ¼ 10 or 0 eV, Cr3Si has the
greater m4 (and k) value, that at DHii ¼ �10 eV; AuCu3

structure has the greater m4 (and k) value.
We now examine the specific bonding motifs respon-
sible for these differences. We turn first to m3: In Table 5,
we show the value of m3 for the two structure types for
the two limiting values of DHii; �10 and +10 eV. We
further decompose the m3 term into four parts, those
paths of length 3 involving 1, 2 or 3 different atoms and
those terms which come about from normalization (see
Appendix A, Eq. (15)). As this table shows, only for
paths which involve three different atoms, does the
value of m3 differ much between the two structure types.
Important paths involving three different atoms are the
3-rings in the system, i.e., triangles of atoms which are
all bonded to one another. To account for the difference
in m3 we must therefore account for the different number
of 3-rings in the two structures.

For high-coordination intermetallic systems such as
Cr3Si and AuCu3; enumeration of 3-rings is most
efficiently carried out by considering the different
coordination polyhedra. The coordination polyhedra
of both the AuCu3 and Cr3Si structures are shown in
Fig. 9. In AuCu3; there are two different polyhedra, one
centered on the Au atom and the second centered on a
Cu atom. As Fig. 9 shows, both these polyhedra are 12-
coordinate cubooctahedra. In the case of Cr3Si; the Si
atoms lie in the center of 12-coordinate icosahedra while
the Cr atoms lie in the center of 14-coordinate
Frank–Kasper polyhedra (this last polyhedron is a
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Fig. 9. Near-neighbor coordination polyhedra for the AB3 structure

types AuCu3 and Cr3Si: (a) Au-centered coordination polyhedra in the

AuCu3 structure. (b) Si-centered polyhedra in the Cr3Si structure. (c)

Cu-centered polyhedra in AuCu3 structure. (d) Cr-centered polyhedra

in the Cr3Si structure. Au and Si atoms: white spheres, Cu and Cr

atoms: black spheres. The numbers of 3-rings passing through the

polyhedral center are given. In (a) one of these 3-rings has been

highlighted. In (d) this number has been normalized, see text.

Table 6

Decomposition of the normalized, standardized m4 of rCr3Si
and rAuCu3

into walks

DHii ¼ þ10 eV DHii ¼ �10 eV

AuCu3 Cr3Si AuCu3 Cr3Si

4-rings 1:03 1:39 0:43 0:38
Angles 2:16 2:16 1:22 1:19
Other terms in m4 0:51 0:49 1:24 1:22
Total m4 3:71 4:04 2:89 2:80
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hexagonal antiprism with both its hexagonal faces
capped).

To enumerate the 3-rings, we count all 3-rings which
pass through the central atom of the polyhedra. These
numbers are tabulated in Fig. 9, adjacent to each of the
coordination polyhedra. In the case of the 14-coordinate
Frank–Kasper polyhedron, we further normalize this
value to take into account the higher coordination
number of the system. (As the goal here is to compare
the 14-coordinate polyhedra to 12-coordinate polyhe-
dra, second moment scaling gives in this case a
normalization factor of ð12=14Þ

3
2; see Appendix A.) As

shown in Fig. 9, the two AuCu3 coordination polyhedra
have 24 3-rings, while the Cr3Si polyhedra have 30 and
29 3-rings. There are therefore roughly 25% more 3-
rings in the Cr3Si structure than the AuCu3 structure. It
is therefore not surprising that the 3-ring contribution to
m3 is roughly 10–20% larger in the former geometry, see
Table 5.

We now turn to the geometrical factors responsible
for differences in m4: In Table 6, we show the fourth
moment for DHii ¼ þ10 and �10 eV: As noted pre-
viously, while for DHii ¼ þ10 eV the Cr3Si structure has
the largest fourth moment, at DHii ¼ �10 eV; the
AuCu3 structure has the greatest m4: It is this change
in the fourth moment which is responsible for the
different differences of energy curve seen in Fig. 8.

To understand the evolution in the fourth moment,
we decompose it into three parts, those involving,
respectively 4-rings of atoms, bond angles and finally
all other terms involving three or fewer different atoms.
As Table 6 shows, while all three of the above terms play
a significant role in the fourth moment, it is the change
in the contributions from the 4-rings which play the
most significant role in going from DHii ¼ þ10 to
�10 eV: Thus for +10 eV the difference in m4 between
the two structures is 0.33, while the difference in 4-rings
is 0.36, while at �10 eV; the difference in m4 is �0:09;
while the difference in 4-rings is �0:05:

We can account for the changes in 4-rings if we
decompose all 4-rings into the three principal types,
those involving alternating ABAB atoms, those invol-
ving only one A but three B atoms, and those involving
only B atoms (there are only these three types as there
are no A–A bonds in either AuCu3 or Cr3Si). In Fig. 10,
we show the first coordination polyhedron centered on
an A atom together with either A or B atoms from the
second coordination polyhedra. From these pictures we
can directly enumerate all alternating ABAB and ABBB

4-rings passing through the central A atom. As this
figure shows, there are 72 and 48 ABAB 4-rings for,
respectively, AuCu3 and Cr3Si: But, as this figure also
shows there are 192 and 240 ABBB 4-rings for,
respectively, these same two structures. Thus AuCu3

has 50% more ABAB 4-rings but 20% fewer ABBB 4-
rings than Cr3Si:

This difference in 4-rings is seen in the actual
contributions of each type of 4-ring to the overall
fourth moment. In Fig. 11, we show the contribution to
the total fourth moment from separately the ABAB,
ABBB and BBBB 4-ring motifs for DHii ¼ þ10 to
�10 eV: As this table shows, the contributions of the
ABAB and ABBB parts follows the different numbers of
rings in the two structure types. Thus for both 
10 eV
the AuCu3 ABAB and ABBB terms are, respectively,
50% greater and 25–50% smaller than the Cr3Si values.

Fig. 11 shows that the evolution in the fourth moment
is caused by the relative importance of ABAB and ABBB
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Fig. 10. Second coordination shells around the Au and Si atoms in

respectively the AuCu3 and Cr3Si structures. (a) Au-, (b) Si-, (c) Cu-,

(d) Cr-atoms of the second coordination shell that bridge atoms of the

first coordination polyhedra. Au and Si atoms: white, Cu and Cr

atoms: black. The numbers of 4-rings passing through the central atom

are given. As all first coordination polyhedra are 12-coordinate, no

normalization is needed.

AuCu3:         1.29x103              20.11x103                3.32x103

 Cr3Si :         0.74x103              28.38x103                 4.33x103

A

B A

B A

B B

B B

B B

B

 ∆Hii=+10 eV

 ∆Hii=-10 eV

AuCu3:         1.30x103                0.96x103                 0.02x103

 Cr3Si :         0.74x103                1.26x103                 0.03x103

Contributions to Fourth Moment

Fig. 11. Contributions to the fourth moment from 4-rings in AB3

compounds in the AuCu3 and Cr3Si structure types. Contributions

given in eV4=atom ð9� m0
4Þ; see Appendix A.
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4-rings to the total 4-ring contribution of the fourth
moment [51]. In particular for DHii ¼ þ10 eV; the
ABBB 4-ring term dominates, while for �10 eV; the
ABAB term plays a slightly greater role. To account for
the evolution in the fourth moment in going from þ10
to �10 eV; we must explain why ABBB 4-rings are most
important at þ10 eV but they are not as important at
�10 eV:
The explanation for this effect lies in the Wolfsberg–
Helmholtz approximation:

Hij ¼
K

2
ðHii þ HjjÞSij, (11)

where Hij; Hii; and Sij are, respectively, the off-diagonal
Hamiltonian matrix element, the on-site Coulombic
integral and the overlap integral between the i and j

atomic orbitals. For DHii ¼ þ10 eV; the A and B atom
d-orbitals have an Hii values of, respectively, �6 and
�16 eV; while for �10 eV they have values of, respec-
tively, �16 and �6 eV: Thus in going from DHii ¼ þ10
to �10 eV; while Hii þ Hjj (and consequently Hij) is
constant for A–B bonds, the Hii þ Hjj terms for B–B

bonds become roughly three times weaker. It is this
change in relative A–B and B–B Hij terms which is
responsible for the changes in the ABBB vs. ABAB 4-
ring contributions, and consequently it is this change
which is responsible for the different fourth moment
effects at DHii ¼ 
10 eV:

3.4.2. Icosahedral Cr3Si vs. closest-packed AuCu3

In the previous sections, we have told an involved
story. Within the context of tight-binding theory, we
have found the factors responsible for the stability of the
Cr3Si and AuCu3 structure types. The former structure
is the simplest of all icosahedral phases, a family which
extends to many remarkable intermetallic crystalline
and quasi-crystalline structures, while the former is a
fine example of an ordered closest packing. In view of
the importance of both icosahedral and closest-packed
structures, it may be useful to recapitulate the argu-
ments previously presented, but in a form which seeks to
emphasize chemical bonding principles.

As Fig. 4 and Table 1 show, the icosahedral Cr3Si
structure is stable for systems with negative DHii values
and an average of 5–7 valence electron/atom. The
closest-packed AuCu3 structure is stable for positive
DHii values and 7–10 electrons/atom. As Fig. 8 shows,
these trends can be understood by considering the third
and fourth moments for these two structures. The third
moment term is responsible for the stability of the Cr3Si
structure from 5 to 7 electrons/atom for all values of
DHii; the fourth moment term causes the stability region
of the Cr3Si structure to shift from 1–10 electrons/atom
for DHii ¼ �10 eV to 0–6 electrons/atom for DHii ¼

þ10 eV:
Thus the stability of the Cr3Si structure from 5 to 7

electrons atom is due primarily to the third moment.
The icosahedral Cr3Si structure has more 3-rings, i.e.,
more triangles of bonded atoms and thus has a more
negative third moment for all values of DHii: This larger
number of triangles of bonded atoms is insufficient to
account for the stability of the closest packed structures
from 7 to 10 electrons/atom. Equally important here is
the fourth moment contribution. In particular, for
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positive values of DHii; B–B bonds are particularly
strong. As in the Cr3Si structure there are a greater
number of ABBB 4-rings involving such B–B bonds, the
fourth moment of the Cr3Si structure becomes particu-
larly large. The Cr3Si structure is therefore destabilized
near the half filled band. Thus from 7–10 electrons per
atom, values near the half-filled band (recall that the
valence band has s, p, and d components and therefore
can accommodate a total of 18 electrons/atom) the
AuCu3 structure is favored.
4. Conclusion

This has been a story with a number of parts. We have
suggested that it is the electron count and the difference
in electronegativity which are most responsible for the
differences in structure for AB3 binary transition metal
alloys. We have shown that tight-binding theory with
second moment scaling can be used to account for these
differences in energy, and that this theory can be used to
discern the factors responsible for the structures. Not
surprisingly, we have found that triangles of bonded
atoms plays a role in differentiating icosahedral phases
from closest packed structures. Perhaps more surpris-
ingly, in certain cases, the larger number of icosahedral
structure 4-rings also plays a role.

We can compare these results to earlier calculations
performed on Frank–Kasper vs. closest packed elemen-
tal and alloy structures [52]. In this earlier work, it was
found that the Frank–Kasper phases, the w- and s-
phases, were more stable at 6–7 valence electrons/atom,
but that closest packings, fcc and hcp, were stable from
7–10 electrons/atom. These results are comparable with
the Cr3Si vs. AuCu3 results presented in this paper.
Taken together, they suggest Frank–Kasper phases and
closest packings are stable at, respectively, 5–7 and 7–10
electrons/atom. Within this context it would be inter-
esting to study the stability of transition metal
Frank–Kasper AB2 Laves compounds and the known
comparative absence of transition metal AB2 closest
packed structures.
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Appendix A. Normalized moments

It proves useful to transform a density of states, as
derived from a tight-binding calculation, into one which
is in standard normal form, i.e., one where the zeroth,
first and second moments are, respectively one, zero,
and one. This transformation is straightforward but as
the equations are somewhat cumbersome it is useful to
explicitly state them here. The transformation takes
place in three steps. In the first step we normalize the
density of states, i.e., we set the zeroth moment equal to
one. We do so by dividing all moments by the initial
value of the first moment. We call this set of normalized
(but not standardized) moments, m0

n:
In the second step, we redefine the zero energy so that

the first moment is explicitly zero itself. For the first few
moments we find:

m0

0 ¼ 1, (12)

m0

1 ¼ 0, (13)

m0

2 ¼ m0
2 � ðm0

1Þ
2, (14)

m0

3 ¼ m0
3 � 3m0

2m
0
1 þ 2ðm0

1Þ
3, (15)

m0

4 ¼ m0
4 � 4m0

3m
0
1 þ 6m0

2ðm
0
1Þ

2
� 3ðm0

1Þ
4. (16)

In the third and final step, we redefine the energy scale
so that the second moment is explicitly one:

mn ¼ m0

nðm
0

2Þ
�n=2. (17)

The values mn so defined are in standard normal form,
with m0; m1; and m2; respectively, equal to one, zero, and
one.
Appendix B. Kurtosis

Kurtosis is a quantity which comes in importance just
after the variance as a measure of a density of states. Its
definition is understood by first considering the simplest
of all density of states functions, those composed of a
single delta function. For such a density of states, the
variance is necessarily zero, where variance, s2; is
defined as

s2 ¼
m0 m1

m1 m2

�����
����� ¼ m2m0 � m2

1. (18)

We now turn to a density of states which consists of a
double delta function. This distribution is illustrated in
Fig. 12. Here the two delta functions are at positions x1

and x2 with areas of respectively a and b: In this
example, mn ¼ axn

1 þ bxn
2: For such a double delta

function we find the quantity, k is exactly zero, where
k is

k ¼

m0 m1 m2

m1 m2 m3

m2 m3 m4

�������

�������
. (19)
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x

ρ(x)

x2x1

Fig. 12. A function with zero kurtosis: two delta functions, one at x1;
the other at x2 with areas of, respectively, a and b: This construction is

used in the text in determining an expression for kurtosis in terms of m0

through m4:
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We summarize our above findings. For a density of
states comprised of a single delta function, the variance,
s2; is zero. For a density of states comprised of two delta
functions k ¼ 0: Thus the variance is a measure of our
ability to describe a density of states by a single energy
value; k is a measure of our ability to describe a density
of states by a pair of values. This latter k value is termed
the kurtosis (though some further multiply the kurtosis
by additional functions of the zeroth, first and second
moment). The kurtosis is sometimes referred to as the
peakedness of a density of states. In the case of a
standard normal density of states, the kurtosis reduces
to an especially simple form:

k ¼ m4 � m2
3 � 1. (20)
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